A Morphing Active Surface Model for Automatic Re-contouring in 4D Radiotherapy
نویسندگان
چکیده
Delineation of tumor and organs at risk on each phase of 4D CT images is an essential step in adaptive radiotherapy planning. Manual contouring of the large amount of data is time-consuming and impractical. (Semi-) automated methods typically rely on deformable image registration techniques to automatically map the manual contours drawn in one image to all the other phases in order to get complete 4D contouring, a procedure known as automatic re-contouring. Disadvantages of such approaches are that the manual contouring information is not used in the registration process and the whole volume registration is highly inefficient. In this work, we formulate the automatic re-contouring in a deformable surface model framework, which effectively restricts the computation to a lower dimensional space. The proposed framework was inspired by the morphing active contour model proposed by Bertalmio et al. [1], but we address some limitations of the original method. First, a surface-based regularization is introduced to improve robustness with respect to noise. Second, we design a multi-resolution approach to further improve computational efficiency and to account for large deformations. Third, discrete meshes are used to represent the surface model instead of the implicit level set framework for better computational speed and simpler implementation. Experiment results show that the new morphing active surface model method performs as accurately as a volume registration based re-contouring method but is nearly an order of magnitude faster. The new formulation also allows easy combination of registration and segmentation techniques for further improvement in accuracy and robustness.
منابع مشابه
A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom
Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion...
متن کاملStandard edge detection algorithms versus conventional auto-contouring used for a three-dimensional rigid CT-CT matching
Background: To reduce uncertainties of patient positioning, the Computerized Tomography (CT) images acquired at the treatment planning time can be compared with those images obtained during radiation dose delivery. This can be followed during dose delivery procedure as Image Guided radiotherapy (IGRT) to verify the prescribed radiation dose delivery to the target as well as to monitor ...
متن کاملThe clinical application of 4D 18F-FDG PET/CT on gross tumor volume delineation for radiotherapy planning in esophageal squamous cell cancer
A combination of four-dimensional computed tomography with (18)F-fluorodeoxyglucose positron emission tomography (4D CT-FDG PET) was used to delineate gross tumor volume (GTV) in esophageal cancer (EC). Eighteen patients with EC were prospectively enrolled. Using 4D images taken during the respiratory cycle, the average CT image phase was fused with the average FDG PET phase in order to analyze...
متن کاملExplicit Control of Topological Transitions in Morphing Shapes of 3D Meshes
Existing methods of morphing 3D meshes are often limited to cases in which 3D input meshes to be morphed are topologically equivalent. This paper presents a new method for morphing 3D meshes having different surface topological types. The most significant feature of the method is that it allows explicit control of topological transitions that occur during the morph. Transitions of topological t...
متن کاملAxillary irradiation in breast cancer; does meticulous contouring make a difference?
Background: Due to the current trends towards replacing axillary dissection with radiotherapy, the need for more precise definition for different nodal stations becomes a must to ensure safe and adequate dose coverage. So, our study aimed to evaluate the coverage of axillary nodal volumes based on Project on Cancer of the Breast (PROCAB) guidelines, for cases previously treated with our standar...
متن کامل